Latest News
Research Interests
Machine learning under data paucity (or learning with small data): few-shot learning, contrastive learning, domain adaptation
Trustworthy machine learning: adversarial attacks and defenses, uncertainty quantification, interpretability
Machine learning for medical science: medical image analysis, disease detection and diagnosis, disease progression modeling
Publications
Selected Conference Publications
Dong, F., Chen, M., Zhou, J., Shi, Y., Chen, Y., Dong, M., Wang, Y., Li, D., Yang, X., Zhu, R., Dick, R., Lv Q., Yang, F., Lu, T., Gu, N., & Shang, L. (2024). Once Read is Enough: Finetuning-free Language Models with Cluster-guided Sparse Experts for Long-tail Domain Knowledge. Advances in Neural Information Processing Systems (NeurIPS). [Paper]
Shi, Y., Chen, Y., Dong, M., Yang, X., Li, D., Wang, Y., Dick, R., Lv Q., Zhao, Y., Yang, F., Lu, T., Gu, N., & Shang, L. (2023). Train Faster, Perform Better: Modular Adaptive Training in Over-Parameterized Models. Advances in Neural Information Processing Systems (NeurIPS). [Paper]
Chen, Y., Shi, Y., Dong, M.‡, Yang, X.‡, Li, D., Wang, Y., Dick, R., Lv Q., Zhao, Y., Yang, F., Gu, N., & Shang, L. (2023). Over-parameterized model optimization with Polyak-Łojasiewicz condition. International Conference on Learning Representations (ICLR). [Paper]
Di Campli San Vito, P., Shakeri, G., Ross, J., Yang, X. and Brewster, S. (2023) Development of a real-time stress detection system for older adults with heart rate data. International Conference on PErvasive Technologies Related to Assistive Environments (PETRA). [Paper]
Dong, M.*, Yang, X.*, Zhu, R., Wang, Y., & Xue, J. H. (2020). Generalization bound of gradient descent for non-convex metric learning. Advances in Neural Information Processing Systems (NeurIPS). [Paper][Code]
Yang, X.*, Dong, M.*, Guo, Y., & Xue, J. H. (2020). Metric learning for categorical and ambiguous features: An adversarial method. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). [Paper][Code]
Journal Publications
Li, X., Li, Z., Xie, J., Yang, X.‡, Xue, J. H., & Ma, Z. (2024). Self-reconstruction network for fine-grained few-shot classification. Pattern Recognition, vol. 153, Article 110485. [Paper][Code]
Li, X.*, Yang, X.*, Ma, Z., & Xue, J. H. (2023). Deep metric learning for few-shot image classification: A Review of recent developments. Pattern Recognition, vol. 138, Article 109381. [Paper]
Yang, X.*, Guo, Y.*, Dong, M., & Xue, J. H. (2022). Towards certified robustness of distance metric learning. IEEE Transactions on Neural Networks and Learning Systems. [Paper][Code]
Lu, Y., Wang, B., Zhao, Y., Yang, X., Li, L., Dong, M., Lv, Q., Zhou, F., Gu, N. & Shang, L. (2022). Physics-informed surrogate modeling for hydro-fracture geometry prediction based on deep learning. Energy, 31(4), 1569-1579. [Paper]
Li, X.*, Yu, L.*, Yang, X.*, Ma, Z., Xue, J. H., Cao. J & Guo, J. (2020). ReMarNet: Conjoint relation and margin learning for small-sample image classification. IEEE Transactions on Circuits and Systems for Video Technology, 31(4), 1569-1579. [Paper]
Yang, X., Dong, M., Wang, Z., Gao, L., Zhang, L., & Xue, J. H. (2020). Data-augmented matched subspace detector for hyperspectral subpixel target detection. Pattern Recognition, vol. 106, Article 107464. [Paper]
Yang, X., Zhang, L., Gao, L., & Xue, J. H. (2019). MSDH: Matched subspace detector with heterogeneous noise. Pattern Recognition Letters, vol. 125, pp. 701-707. [Paper]
Dong, M., Wang, Y., Yang, X., & Xue, J. H. (2019). Learning local metrics and influential regions for classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, pp. 1522-1529. [Paper]
Full list of publications in Google Scholar.
Professional Activities
Editorial Boards
Associate Editor, IEEE Transactions on Circuits and Systems for Video Technology (2023-)
Associate Editor, Neurocomputing (2021-)
Guest Editorials
Reviewer
Journal reviewer: IEEE Transactions on Geoscience and Remote Sensing (TGRS), IEEE Transactions on Image Processing (TIP), IEEE Transactions on Medical Imaging (TMI), IEEE Transactions on Neural Networks and Learning Systems (TNNLS), IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Pattern Recognition, etc.
Conference PC member: BMVC, ECML PKDD, MICCAI, NeurIPS, etc.
Acknowledgements
|